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TEMPERATURE RELAXATION OF A HIGHLY RARIFIED GAS

V. V. Andreyev, I. F. Mikhaylov, L. V. Tanatarov

ABSTRACT. The problem of establishing the thermal relaxa-
tion of a rarified gas in a closed volume, the surface tem-
perature distribution being nonuniform, is discussed. The
dependence of temperature on spatial coordinates and time
is preset. Reflection of particles from the boundary is
taken as diffusive. The possibility of particle adsorption
is considered, and the particle distribution function for

a long time interval is obtained.

Introduction '1721*
The operating principle of adsorption and condensation vacuum pumps, as we

know, is one of reducing the voiume of particles in the evacuated volume during

the cooling of the'condensing element as the particles are adsorbed on the cool

surface. The development of a theory for pumps such as these requires consi-

deration of the simplest model that can be investigated mathematically. That

model is an expanse holding a rarified gas. The temperature of walls capable

of adsorbing gas particles is a specified function of coordinates and time.

This model can be used to find the ‘gas distribution function in terms of velo~

cities and coordinates, to ascertain the influence of spatial nonuniformity

wall temperature, and to establish the time required for the gas to reach equilie

brium when there is a sharp change in the gas (temperature relaxation). Since,

under real conditions, only the temperature of that part of the surface limite

ing the gas changes (the cooled surface of a condensation pump, for example),

it is of interest to ascertain the time of temperature relaxation in terms of

the ratio of the area of this part to the entire area of the vacuum chamber

surface.

A real pump has a macroscopic flow, the result of the inflow, caused by the
discharge in the previous stage. Moreover, always to be dealt with is a mix-
ture of a great many different residual gases, 0il vapors, and the like. All

of this serves to greatly complicate the mathematical consideration of the pro-

* Numbers in the margin indicate pagination in the foreign text.




blem. This paper does not intend to deal with all the factors influencing the
evacuation process, but rather to investigate only the exhausting action of the
cooled surface, because this is the basis of the operating principle of condern-

sation and adsorption pumps alike.

1. Statement of the Problem

Let us consider a gas contained in a volume limited by a closed, convex
surface of arbitrary.shape, for which there is given some temperature distribu-
tion that depends on coordinates and on time. The gas will be taken as rari-
fied to the point that ¢ > L (! is the mean free path for the particles, L is
the characteristic dimension of the expanse). Let us seek the particle distri-
bution function in terms of coordinates and pulses. This function, F(?, ;3 t),

will be satisfied by the kinetic equation
\'ap 1 e~ L
— e — y = 0.
o T OV EeRa=0

let us suppose no external fields are acting on the molecules of gas. In
such case the left side of Eq. (1) will have no summand proportional to g. The
condition ! ® L results in the integral of collisions equalling zero. Let us
designate the temperature of the surface of the expanse at point ; at time t

- .
by T(r, t). It is apparent that Eq. (1), by itself, will not solve the pro-

blem. It still is necessary to write the boundary condition describing the mech-

anism whereby the gas particles are reflected from the wall. - We will take it
that the particles hitting the surface are "thermalized!" before they leave it.
In other words, the distribution of the particles flying off the surface is

isotropic in direction, and their distribution function is in the form

7
R (2)
wmET(r, 1) >
Fo = Ae BN (pn) < O.
: -

Here A does not depend on pulses, and n is an external normal to the surface at
_..)
point r.

It is convenient to write the preexponential factor A in Eq. (2) in the form
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where

PR .
N T [2mkT (r, 7.

- ‘
n(r, t) is a function subject to determination.

The system of Eq. (1) characteristics is in the form

where

4 B

T

is
is
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is

Obviously

the point of observation;

oy
that point on the surface off which a particle with pulse p., observed

..-)
point r, flies;
: -+ . -
the time of flight for this particle from point r' to point r.
- '-‘—>;v

eplrrk ()

The solution of Eq. (1) satisfying the condition of Eq. (2) on the surface

of the expanse is

' > > __)" _) - X
F(rtip)=Fo(r,t—1; ). ‘ (5)

Let us write the normal component of the flow, Jn’ at the wall as

mJ, = S (pn)dpF (r',t — 7 p) + S (pn) dpF (r. t;p). .
S . >-> L g
Fm>0 s S KO e

Utilizing Egs. (2) and (3), and integrating, we find
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- -
g 2nRT(r’ t—%) .

n

Jn=—n(7.z‘)+—i— J o (=1

(pn) dp —~ :
[2mkT (', t — V)P

>
(P n)>0

As we see, n(r, t) is equal to the flow of particles from the surface in- 4723
side the volume upon selection of normalization established by Eq.

(3).

. -

In the steady-state case, T(r, t) does not depend on t, and Jn = 0, and
this leads to the following integral equation .for finding the unknown function
.-)

n(r)

2 > ' —— .
”(’)27{ j (Pn)d;-__(r_)___.e kT ()
Y [2mkT ()2

-u@
Introducing spherical coordinates and directing the Z axis with respect to n,
we obtain '

P, = pcbs-\‘}; .px = psinﬂcos q>i 'py -—:._'p'sim‘}sin Q.

After integrating with respect to p from O to ®, the equation will take the
form

->

: 2n
n (r) = —:-1-‘- sin © cos 9d9 g don (;').
. 0 PR -

‘°L/-§wla

Its solution is a constant

> .
n(r)=c0nst.' {7)
We conclude that in the steady-state case the flow of particles from the

surface inside the volume is a constant magnitude for all points of the surface.
This result was the one obtained in reference [1].




2. Adsorption in the nonsteady-state case

Pointed out in the preceding section was the fact that in the steady-state

—’
case n(r, t) = constant. This is not so in the nonsteady-state case.

We will assume that all gas particles striking the surface are adsorbed
(the reflectance equals zero). The flow of particles desorbing reversibly in-
side the volume equals n(;, t). (We are talking about particles deposited on the
surface some time previously. They have been thermalized and now are being
desorbed). This flow is proportional to the number of particles on the surface,
that is, to the magnitude

z

J (rryde.

The following relationship can be written

U

> 1 =l R
n(r’t)=-?e kT(r, 2) S Jn(r'tl)dtl"
0 :

-

(8)

T is the magnitude of the order of the period of oscillations of an atom in

(®)
the lattice (To'v 10—13 sec_l)

?

U is the energy required for a gas particle to escape from the surface.

Strictly speaking, the condition set forth in Eq. (8) is correct only when
no more than one layer of particles is adsorbed on the surface. If the entire
surface is completely covered by a monolayer of adsorbed particles, n(;, t) 1724
ceases to depend on their number, so the condition set forth in Eq. (8) should

be written

%

O P e s ) ,\
nir,f)y=—e @ S J (r,t")dt i (9)
. . h :

where

'?(x) is a function linear for small x, and approaching I asymptotically



when x =+ &

ow=F &L

I, x»1, 10)

—~
b

where

a, I are constants.

Let us assume that the number of adsorbed atoms is small, and that we can
use Eq. (8). The distribution function for the particles flying off the surface
will be sought for in the form shown in Eqs. (2) and (3). Eq. (5) will yield

the distribution function for the particles inside the volume.

Substituting the Eq. (2) distribution function in Eq. (8), we obtain the

—’
equation for finding the unknown function n(r, t)

v : )
— t .
1. wrzn 0,12
ni=—e ‘Sdt = X (mydp ¥
)
—C0 -
(p )0 E
— p‘ ’
TP o)

> . e

Cnr f— -> R

‘anJ T& SN I
2mET ('t — o)) A

This general statement of the problem is extremely complex, so we shall consider
its simplest variant. Let us take it that the surface temperature is a function
of time only, and that the surface proper is a sphere. Let us hypothecate the fol-

lowing temperature time dependency

T_, t<0,; . (11)

T@H={. . S
Ty t>0.70

Let us select the original condition as

n()=n_, ¢<0. .




Because the temperature changes in bounds [according to Eq. (11)] the func-

tion

Bla

1D f“e— o

which is the probability of desorption of the particle, too will change in bounds.

Then, as follows from Eq. (8)

n_=f(T) \ J(t)dt'”

—co

And wvhen t > O

n(t)——fczyﬁt; _ f(T+)SJ (¢ de.

let us set the origin of the spherical system of coordinate at the point

£ 3
of observation, r. Then, from this point on the surface of the sphere

- > :
.c___;?_@izgﬁ.‘f’, |7—-7]=2Rcos®..

We obtain the following expression

J () =—-n(t)+ -2—3 n(t — t)t'dt' j e
_ o < : 0 ,
R '__/t .
. t2 \ o
-+ 2n_ § et (1—22-—5—) dz, ..
: : b4 ’
0 - ey




for the flow Jn(t), where

2_~2R2m P
t;t -I-Z'T—:: {JA-B)

Applying a one-sided Laplace transform to both sides of Eq. (12), and using

the expression written for Jn(t), we obtain

Applying the inverse transform we find

FRT Cdee s T
o - 1 L s g
M0=555_M®fﬁv

-—fee

{14)

Readily seen is that

‘‘‘‘‘‘‘

o o _ :
N * s l‘2 o
: J e~ dt \ 2% (1—-2272—> dz==t_F(st.),

co . .I/y '
Fo=\edy [ 267 (1—2ydz.

0. 0

We are interested in the asymptotic behavior of n(t) for large t. We must
know the behavior of the function n(s) near zero [n(s) is a form of the Laplace

function n(t)]. It can be shown that this expansion also has the form
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1 V=, ¢ b
4.t 16331113

nFT5 S - - - (15)
n(s)———-é— ] T 1, '
t 4. ——t +=S§ ms

f(T+)+ 3 +16

Substituting Eq. (15) in Eq. (14), and integrating

FT )-}—I :n:t o
n({t)y=n_ — - M = X
f(3 +1/m 186 (VF (T,) + 1,V al3)
VT ‘-3—]
X\t —1, !

UIE) + Fyg

or, using Eq. (13)

U/kT +R a/.‘Zm:t Rt
T+ !/ Omm

n(t)=n U/&T, 2nm
32" +%Ri/ﬁ; 3@ +R|/ g

‘ ‘ 3, U/kT +R ﬂ 2run

x| o e (16)
BT TR 2mm || 16
WL O g Ve L g 'fjﬁ L

When adsorption does not occur, Eq. (16) yields

L ‘ ORYm? (1 — A—2) B T—i-‘;:; !
H= VA 1 — » A==,
| n (%) fn_{ -+ 3F ) 2:t(kT_)3/2 } T__-‘“




if T = 0.
if we set o

The asymptotic form of the function n(t) for small t is

AN F(T)
r=ryn T ( f(Tf))

The Eq. (9) condition must be‘used if there is a thick layer of gas molecules
on the surface of the expanse (a film of condensate). We shall teke it that the
layer of adhesive particles is so thick that the lower relationship of Eq. (1C)
is applicable to Eq. (9). Then -

N

> la TF

n(r.t)=Te .
, L

let us now use this expression to find Jn. Then

P t . .
T, .  Hx 2 =2 € __ 4
| }’fl =—e +}‘;‘S dQ () S PP T +
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The expression obtained is valid for an expanse of any shape. Integrating

with respect to p, we obtain

Siid
‘rJ 1 -> ++A —Zg“ / l» +w2 _!;;Lgm
Tl 1 ] — r=rim _
la =m SdQ(Qn) {e {1 (1+ 2kT _1* )e J

U . RN
— e - > Lr=r’’m

kT+ » dre—r 2m‘ - 2kT+f’
¢ [1“(1+'! 2kT+ltz Je - }}
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»> o

Z z
If L m/kT+t < 1, the exponents containing lr - r' can be expanded in series

and

_ m*la
4rct To -

( —U/kT —U/KT

e > S>> > ‘—>“;:
AR (kT+)2) S dQ (Qn)lt—r’] ;

3. Nonuniform Distribution of Temperature on the Surface in the Nonsteady-
state case

The preceding section assumed a bound-like change in temperature taking
place simultaneously over the entire surface. Now we shall assume that it takes
place only over'a part of that surface. In other words, before time t = O the
temperature of the entire surface is equal to T_, and at time t = O the temperature
of part Sl of the surface will equal T+, and will then remain so. Moreover,
we shall take it that at t = O quite a thicktlayer of gas particles already
has condensed on the surface such that the flow of particles evaporating from

that surface will depend solely on the temperature, or

—U/T_
n_=Ae v
where A is a constant.

The flow J; over that part of the surface where the temperature remains

equal to T_, even when t = 0, is

- @ S e, Eas pl !
— > 2.7 3dp ~ 2mkT—_ >
Jn-——n_(r,t)—}—-g\g dQ(Qn)EkaT E n_(r,t—-'x:).—i—
-> >
Lr=r’1 :
: : 1 .
2 > S>> sdp . 2mkT_ ->’
T g ) g e A A
- : 0 -
Q (r)- - e
—2- > > psdp 2””27-_*_ : -)'
T3 g i S @mkT )+ 2y (2 =),
-> \ -»> > '
-Q () |r—r’|m

o

L1
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where U
- - kT 2. . .
n+(r', t - T) = Ae %, O(r) is the solid angle corresponding to that

part of the surface, Sl’ the temperature of which is changing, and the lines

containing the integral signify integration with respect to the remainder of the
surface,
The expression for J_ can be written in another way, thus
- n
| T oo y o pH-anl
o .24 > S>> pidp .7 amkTy
LT = d2 (Q e @ —
L =) B @mAT, ) T
‘ -> - > : -
Q(r) fr—rm - T
o : p’+2mU
: p3dp . = SmkT .
(2mkT _)*
> > S ) o
} r=r’ |m .
7 .
or, after 1ntegratihg with respect to p,
) N e
A » -3 e I» > 2 ___I_{:—_r'_lz_:_n______U C
N sl f—r l m 2miT 4 1 Ky
T=2 g G (1+ mrE)e -
TR \ i
Q () ’
- > :
. , ,]-> > o r=rpm U e
r—r'l*m 2T _ 13 KTy T n
—_— (= : - S
, (,+ HT_F )e | }
when L2m/ tsz+ €1
- A —unr. --U/kT ~UNT.  —U/Ty
’ zxt“(kT)2 <kT+)2j
R R N ISR AR o o , . (17>
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Eq. (17) shows' that Jn < 0, that is, that the surface beyond the limits

of Sl is united by the molecules of the condensate.

The flow at any point of Sl can be found by using the formula

Jr= A(‘”’” —e”””‘r+)+'-§- g dﬁ(’éﬁ)}(m
> . g0 - >
> > _lrerlPm U > > lrertlim U
r—rPm T EILE TR 1 |r— r]n7 2T_8* ”L}
T o )¢ AT L el A - (171)

-—M
The second summand is small because of the smallness of 1/T f & and @n), or,
' -
Q)
the smaller the section of the surface, the closer it is to a plane,
Eg. (17') shows that J; > 0. Some of the condensate is pumped from hot /72

sites on the surface to cold.

Eqs. (17') and (17) remain valid so long as at least a few atomic layers
of condensate remain on the section of the surface with temperature T_, But
-+ : :
n(r, t) depends on arguments all its own, and this dependency can be found through

-
Eq. (8). The function n_ (r, t) remains as before.

—'
Expre551ng the flow J in terms of n_ (r, t), and substituting it in Eq. (8),

we obtain an 1ntegral equatlon for flndlng the functlon n_ (r t)

3 -
n Gy \ NIy, m)
dt |\ dR@n) |14+ | X
) f(T_)+ j | (")( TR
Q(r)
BFem o o

‘-kT.*. 2 ’ S (o pep
xe 26Tt Ae | +~.5Sdt \S‘ dQ (Qn) S ©@mkT_)* *
. L] : P c _’.) ‘

lr—-r’lm
Lo e -~
S
3z - .

R S ! ‘

oxe - n__(r’,t'——'c)-——§dtn (r. t')-r—:-t:S ydsz(gn)x

S th RS LSNP g T
-> |r-—rlm

{4 Lf__:_l_m.) M‘_];
{1 ( ™ oKT_17 o 13




-+ -
If we introduce a new, unknown function §(r, t) = n (r, t) - n , and designate

_lr——r'hﬁt L
VeomkT, '

R

the above equation can be rewritten in the form

£

2 — ————
g(r t) d ’ S e (t“il):z e
£ - dQ Qn dtg(f t)
f(T)+S§( ) ‘ (@) =y |
' | ‘ 2o U 2 5o (18)
t 2 o t -
: 1 73 kT +\ f”l
1 ! t a— + — P ®
v=———3—ﬁ—§d£2(§2n)§dt{ (1+ ) S Ae (‘H't,z) o
: : T T fw:' : o s
Q(r) .
Completing the one-sided lLaplace transform with respect to the variable t /730

: -
over both sides of Eq.(18), and designating the form of the function §(r, t) by

—-}
E(r, s), we obtain

| %S dﬁ(ﬁ?)[&@.s)f§(;',8)l+§(7,S)-:; S <Q”)+f(T )E(’ 9+

P
Q(r)
. ) . U
S 5 e 1 > > ] E?:: '
+§-S dsz(szn)g(r s)t ?’;(t s)--———f-:— S dQ(Qn)—(n —de  T)—
. . : - . o
» . Q(n)
L¢ oxas TR (19)
—g | @@ (e T LLE9—n L LEI)
Qa ,,,,, R .

e | 'T. o 1k‘. C
. 1 - P
?;(s)=2S.e"Ts 1——-(1—}--——2 e ldv, ..
Jerpm i) e
<s>~Vrc—-s+ ey s 33‘“3 KD (20)
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The behavior of §(r, t) for the case of long time intervals is of interest

—-)
to us. It is determined by the asymptotic behavior of §(r, s) for small s{s < 1),

Let us use the Eq. (20) expansion, and seek the solution of Eg. (19) in the form
of the series

n=0 -

tC9= =2+ Ve O 4ms T EHS+ ..
o o n=0 o

Substituting Eq. (21) in Eq. (19), and grouping terms with identical powers

of s, we obtain a chain of integral equations for finding the unknown functions

g€ 1 §o, §l, o o o 4 §O, §1 etc. At the same time

. --U/kAT :
CE_,=de " t—n_

from whence it follows that

TmEQf) = AT g (22)
or

{-poo

s _umr,

imn_(rf)=4Ae .

This result can be understood if it is recalled that in the steady-state
-3

case n(r, t) should not depend on the coordinate, but rather on the section of

U
the surface, Sl’ where the temperature

e L s
T=T+, n(f, t) =_43
of t, including t = *, L S

for any value

Since

_ 4 /731
YEQ S
=0

is a function that is regular at zero with respect to the variable s, applying
it to the inverse transform ‘

-3 N rioo. hco - i
e _ 1 n st

}_4 g, (rn b= 5 S 2 E (r)s" e ds,

n==0 i

i5




~we obtain a function that is at the very least decreasing exponentially with

time (for long time 1ntervals).

~ ~

We are readily persuaded that § §l, §2 equal zero, and we obtain the fol~

lowing equation for § (r)

’ e e P n_ A
“ia(’)"‘}l?X BENED = Iy~ Ty

&, — 7 [
SdQ(Qn)lr——-r]“ dQ(sz)l-—’—-—é—fl_—g—f—_f:. : (23)
_> .

Q(n

- ~ -
The summand in the expression for §(r,t), corresponding to the term §3{r)33

in Eq. (21) proves to be

~ > . ~ >
CLr=a3%0. (24)
that is,
g(r DA U Es(r)

We must make cerfain assumptions with respect to the shape of the expanse,
and that section of it, Sl’ where the temperature changes from T_ to T+ in order
to determine the function gB(r). Let us assume that the expanse is a sphere
with radius R, and that Sl is the surface of a spherical segment corresponding
to the polar angle 0 .

-
Let us select the orlgln of the spherical coordlnates as the point r. Then

-»-»» .

dQ (Qn) = sin © cos ©d.
If the origin is shifted to the center of the sphere, and if the corresponding
polar angle is des1gnated &‘, obv1ously 0' 26, and

1
dQ Q = —sin$'dd'do = —-———dS
( n) sm Q= iR

16




where dS is an element of the surface of the sphere. Now let us change the
direction of the polar axis, causing it to coincide with the diameter passing
through the center of the spherical segment, and let us once again integrate

with respect to the angle, instead of with respect to the surface. Eq. (23)
can be written

' —U/kT
‘ ~ - mzn ——Aé’ +

2,3(;)""3‘&5\ dQE;;(f) == 483_‘_:,2_(57::5.2___\5“19“._’,/ 14__.

Cavnryf 11 1 m? “>__‘>, 4 .
—Ae {(kT+)2 (kT_)2J48n.4 @jr—rf, | (25)
Sy
; - }’ & ‘= QRL*.(l _,Xg')z, where }1’ '= ?/R. 3' ‘= ?'/R
nn' = cos ¥ cos &' + sin & sin &' cos (P - ©'), here &, ¢, ', ®', are the polar

- -
and azimuth angles of the points r and r'.

Integration of the right side of Eq. (25) with respect to the angle ¢!

S

3

ot | 1 L cost o — & cos ¥’
de(l ~nn’)2='2n{-§-—-§—co$2ﬁ——§—co§ ) - 2 cos +
0 .
3 28 co2 9’}
+-—2—-cos G.costd’'}.
gs(r) obviously is a function of cos ¥. Designating cos ¥ = x, cos &' = x', let

us integrate both summands in the right side of Eg. (£5) with respect to &', We

obtain

> > a;‘ | STV
;§3 (f)——-_;_S Es(x’) dxl — Q‘(%‘%T (ﬂ_j'“Aé’ U/kr+)_ '
-1 ' K ”
—unrom®R 1 1 4 . {——-oi_ ' g_x_’} _
TR [<k7‘+>“‘ “(km“} [F+0+a|—g—s+5 } (1—a).

*

Here @ = éps 00.
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The solution of this equatlion is

-~ f712R4 n_—Ae ~U/KT 4 m2R4
S = L

9sin? =2
2

o

P 1) {

Wy m @Y T 5T

T

. 3, 1 o
| + sin® 4 | cos® —§—° — 5 ¢os 9, (1 +. cos Oy + cos?Fg) — x -+ -—é— x*cos %J} .

~

What follows from the expression obtained for §3(x) and from Eq. (2L) is

that the characteristic time of temperature relaxation for small ¢ o’ that is§ the
time over which §(r, t), approaches its limit, determined through Eqm (22),

1/4

proportional to (S/Sl) , where S is the entire surface of the expanse, and Sl

is that part of it the temperature of which changes from T to T+a
Since J o~ an(r t)/dt, and for long time intervals n ~ 1/t™ (m equals three,
or four), Jnfv l/tm+l. Thus, the full flow tends to zero more rapidly than

.-}
does n(r, t) to its limit, so the relaxation time must be considered the charac-

teristic time for the establishment of a steady-state flow of desorbing particles. Zj3:

- The results show that the flow of particles being set up is determined by
the.lowest temperature of the cold surface. The time required to establish the
steady-stauadesorption flow (the temperature relaxation time) is proportional
to the square root of the fourth power of the ratio of the entire area of the

internal surface of the vacuum chamber to its cold part.

let us emphasize the fact that the results obtained are valid for surfaces
satisfying the condition of convexity, and which have one characteristic dimen-
sion. Moreover; we made use of the assumptions that any particle flying in a
" direction toward the surface settles on that surface (is adsorbed), and is
"thermalized." But it should UYsettle!" on this surface for some time (of the order
of TO) for this tovoccur. This does take place, evidently, at temperatures near
the condensation temperature. The reflectance must be taken as other than zero

at high temperatures, andAthis greatly complicates the problem.

In conclusion, the authors with to thank Doctor of Physical and Mathematical
Sciences R. N. Gruzhi for reviewing the manuscript and for his valuable recom-
mendations. The authors also wish to thank A. M. Kadigrobova for her observations

and advice.
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